

he Macintosh’s killer application was Aldus PageMaker. PageMaker and the Mac seemed
made for each other. Apple needed an application to showcase its graphical user interface
innovations. PageMaker was what designers had wanted (though probably not knowingly) all
along, and the Macintosh was sufficiently advanced, graphically, that it inspired Aldus to
create PageMaker. This was quite lucky for Apple, since without PageMaker, Macintosh (and
Apple) probably wouldn’t be around today.

Most of the important early Macintosh applications—MacWrite, MacPaint, PageMaker, etc.—
were based on the What You See Is What You Get (or WYSIWYG) paradigm. As a result,
WYSIWYG is deeply rooted in the Macintosh culture. Mac users expect that the way their
documents look on-screen is the way they will look when printed. They expect that they can
move elements of their documents around with drag-and-drop. Experimenting is easy and
risk-free, and there is immediate feedback. Consequently, Macintosh encourages the user to
experiment, tweak, and play. This brings forth perhaps the most important Macintosh ideal:
the user, not the machine, should be in control. And this hard-to-describe feeling of not
being at the mercy of the machine is the principle reason Mac users are so passionate about
their choice of computer.

As with the graphical user interface, the WYSIWYG paradigm has not gotten significantly
better since the Macintosh shipped in 1984. The idea of WYSIWYG as a sort of interactive
print preview, a way of experimenting with and proofing a layout is sound. I would never
want to go back to pre-WYSIWYG computing. Nevertheless, the WYSIWYG paradigm as
realized by today’s software has inherent flaws—or tradeoffs—that show no sign of being
overcome. In this article I hope to argue not why WYSIWYG is bad—for I don’t think that at
all—but why for many tasks a completely non-WYSIWYG solution is preferable. Mac users, in
particular, have little exposure to the non-WYSIWYG world, and while it is perfectly okay to
live a sheltered existence, there is also some benefit in understanding the non-WYSIWYG
world, even if you never have occasion to spend time in it.

The non-WYSIWYG World
Believe it or not, there is a world of non-WYSIWYG software that is thriving. I’m not talking
about typewriterish software like Bank Street Writer and AppleWorks (for the Apple II).
Though perfectly good pieces of software, they provide nothing in exchange for forcing their
users to work in non-WYSIWYG environments. Other solutions, the most popular of which are
probably HTML and TeX, do not provide WYSIWYG (as the base representation), but provide a
range of functionality not found in the WYSIWYG world.

HTML: HyperText Markup Language
When you hear WYSIWYG in relation to HTML, the language behind the Web, the first thing
that comes to mind is the increasingly popular collection of WYSIWYG HTML editors—like
CyberStudio, PageMill, and HomePage. The purpose of these programs is to make the
creation of Web pages a WYSIWYG process, even though HTML was never intended to be a
WYSIWYG language. HTML was designed as a markup language, which simply means that
the commands, or markup, are imbedded directly in the content. HTML tags are for denoting
the logical structure of content. In “pure” HTML, one does not specify fonts, styles, and sizes,
but rather the meaning behind parts of the document. There are tags to specify different
levels of headings, to emphasize text, and to indicate that text is part of a quotation or
computer input/output. With HTML 4’s Cascading StyleSheets, page authors can even define
their own structural markup, and specify how it should be rendered under different
circumstances.

This makes sense for several reasons. HTML was designed to be viewed on many different
platforms, from text-only terminals, to Macintoshes, to handheld computers. There’s no way
to guarantee which fonts will be available—or even if there will be a choice of fonts at all.
The page creator embeds information about the structure of his content; the renderer
(browser) determines how best to interpret that structure into a format that its host
computer is equipped to display. Usually this means that headings come out large and bold,
emphasized text is italic or bold, quotes are indented, etc. But there is no law that says it
must work this way. The browser is encouraged to tailor the actual look of the page to the
machine it is running on. It is perfectly possible, and reasonable, for the page to render
differently on the screen of its reader than it did on the screen of its author. With printed
paper documents, this was never an issue; with electronic ones, it is. WYSIWYG programs,
designed as an electronic extension to paper, generally do not take this into consideration.

Ideally, the on-screen display needn’t completely match the printed output. Although I’m not
sure if anyone currently takes advantage of it, HTML has the ability to specify different styles
for viewing and printing. For instance, italic text is often very difficult to read on-screen.
Color, however, is readily available. Thus, emphasized text could appear in a different color
on-screen, but change to italic text that looks great when printed. Similarly, just because a
document looks good printed in Times, there’s no reason people shouldn’t see it in their
browser using a nice screen font like Geneva, Espy Sans, or Verdana.

A Brief History of TeX
TeX (pronounced “tekh”) is a powerful typesetting language created by Stanford Professor
Donald Knuth, author of the seminal work in Computer Science. Knuth designed TeX several
years before the Macintosh and Aldus PageMaker came along. Being a mathematician, he
made it especially good at typesetting mathematics, for which it to this day it has no peer.
Although this makes TeX especially good at typesetting scientific documents, its appeal is by
no means limited to them.

TeX is somewhat similar to HTML in that it is a markup language. The user creates a text file
with their document and adds TeX commands to format it as desired. TeX is also different
from HTML in some important ways. It is completely free, and the source code is available—
with extensive documentation. What this means is that every implementation of TeX uses
the same rendering code. TeX’s feature set is frozen (except for bug fixes), so one can be

guaranteed that a TeX document you write today will look identical on any current (or newer)
implementation of TeX—on any platform. TeX includes its own fonts, so output really is
identical on all platforms. Unlike HTML, TeX is a full-fledged programming language. Whereas
HTML code is “rendered” with a browser, TeX code is “run” with the TeX program, similar to
the way PostScript code is executed in a printer or other PostScript interpreter.

Knuth says that TeX is for producing beautiful documents, and he went to great lengths to
build in a lot of typographic know-how. The hyphenation algorithm alone was the subject of a
PhD thesis. Since TeX understands more about typography (and especially mathematical
typesetting) that most typographers, it takes care of most of the details for you. (You can, of
course, override it if you want to achieve a specific look.) It automatically handles ligatures
and both horizontal and vertical spacing. It is careful not to leave a heading hanging at the
bottom of a page. You don’t have to remember how many spaces to put after a period or
how much space to put before and after each type of heading. (This is especially true when
using a formatting package like LaTeX.) If you change the base font size of your document,
TeX updates all the vertical spacings and margins accordingly. Another example is that
according to conventional typographic rules, the first paragraph following a heading should
not be indented. In a word processor, you’d likely have to apply some styles to get this
effect. With TeX/LaTeX, it happens automatically.

Thus, documents produced with TeX generally look much more professional than those
created with a WYSIWYG word processor. And, surprisingly perhaps, they are often much
easier to create. The fundamental difference in philosophy is that WYSIWYG word processors
try to give you as much control as possible over your document, in an easy-to-use, visual
manner. This freedom generally means that you must do most of the formatting work
yourself. TeX does as much as possible automatically, generally with better results than if
the user had done it. Describing to TeX a format that doesn’t know, is considerably more
difficult that in a WYSIWYG word processor, although in the end TeX is vastly more flexible.

Often, TeX can figure out what you want, without your having to specify the details. For
instance, it has a “&” command, which is similar to a tab stop in a word processor. Simply
inserting ampersands in your text will usually cause TeX to pick the correct alignment. Often
there’s no need to specify what you want at a low level, like “right-aligned tab at 6.5 inches
from the left margin.”

In other cases, there is no way TeX can tell what you want, so you have to be very specific.
For instance, quotation marks must be inserted using either double back-quotes or double
apostrophes (`` or ''), depending on whether they are opening or closing (same thing goes
for single quotes). On the one hand, this is more work than you generally need to do to
insert quotation makers in a WYSIWYG program. On the other hand, the “smart quotes”
algorithms in word processors often curl the quotes the wrong way.

Extensions to TeX
While most word processors have macro languages (or AppleScript) for extending their
capabilities, TeX is a programming language, so it’s relatively easy to customize and extend
it. Many packages for extending TeX can be found at the Comprehensive TeX Archive
Network <http://www.ctan.org>, ranging from packages that help with placing graphics, to
packages for card players, circuit designers, and more.

One of the most popular such extensions LaTeX. Released in 1985, LaTeX (which stands for
Layout TeX or Layman’s TeX depending on who you talk to) is a powerful collection of TeX

macros aimed at simplifying the creation of regularly formatted documents. LaTeX is so
popular that it’s included in most TeX distributions. If you want to create a document in a
standard format (like a letter, report, article, or book) it’s probably even easier to do it with
LaTeX than with a conventional word processor. LaTeX makes it easy to deal with logical
structures such as footnotes, cross references, different levels of headings, lists, quotations,
and more. Because of LaTeX’s underlying TeX architecture, the quality of the typography is
very high.

Limitations of WYSIWYG
While I certainly do not find the current WYSIWYG word processors ideal, I also think that the
WYSIWYG paradigm has inherent problems that mean it will never be as good as non-
WYSIWYG for certain things.

A WYSIWYG word processor will always be slower than editing in a text editor. My dad still
likes to use Bank Street Writer because it takes less time to boot the Apple IIGS and Bank
Street Writer than it does to launch Word 98 on his PowerMac. The IIGS is more responsive,
too. I use BBEdit for much of my writing because I’m impatient. BBEdit never makes me
wait.

Since a WYSIWYG interface has to be provide commands for formatting and layout in its
menus and toolbars, there is no way it can be as optimized for text processing as a text
editor is. This is unfortunate, since probably only 10% of the time it takes to compose a
document is spent on formatting—maybe less. Yet much of a word processor’s interface is
cluttered with infrequently used commands. I think the Twiddle command (from BBEdit) for
swapping the positions of letters or words is far more useful to have readily available than a
Drop Cap command, for instance. Yet word processors have a fancy commands like Drop Cap
—buttons for them, even—and lack basic text processing commands.

When I’m composing a document, I don’t want to be concerned with the way it looks. Just
because the actual document uses a small, hard-to-read-on-screen script font, doesn’t mean
I should not be able to edit with a large font designed for on-screen use. When doing layout,
it’s nice to see where page breaks fall and how columns and margins look. When I’m writing,
they just take up screen real estate would be better-used for letting me see more of the
document.

In principle, one could use stylesheets and macros to work around the display vs. printing
font issue. Most word processors have commands for hiding margins and page breaks. Still,
these seem like clunky solutions to a problem that wouldn’t exist if the composition and
preview environments were separate.

Some kinds of things are just plain hard to do with WYSIWYG. For instance, if you are printing
a document with facing pages, you often want the bottom line of text on each of the pages
to align exactly (vertically). There’s no way to tell a WYSIWG program stuff like this, unless
its designers specifically thought of the command you want and included it in the user
interface. TeX can make short work of this problem, as well as more complicated ones like
making the ratio of height/width of each page equal to the golden ratio—simply because you
can tell it exactly what you want. Here are some effects that would be difficult to do quite as
nicely in a WYSIWYG word processor or page-layout program.

lthough WYSIWYG equation editors are very easy to use, they are decidedly underpowered
and inefficient compared to a text-based approach like TeX’s. It’s very inconvenient to locate
every single symbol in a menu or palette; you must constantly switch from the keyboard to
the mouse, and back. Then you have to find a way to imbed the equation in you word
processor. Most of the time, the equation editor is separate from the word processor, which
means that it’s a pain to use it for lots of small equations. Since the equations behave like
graphics boxes, they often throw off the line spacing. Furthermore, the output of WYSIWYG
equation editors is usually greatly inferior to TeX (although in principle this need not be the
case).

Deferring Layout Decisions
Probably the biggest criticism of WYSIWYG is that it really means “What you see is what
you’ve got.” Once you’ve created something in a WYSIWYG environment, it’s generally
difficult to change how it looks. While formatting (fonts, sizes, styles, rulers) decisions can
easily be changed with suitably defined stylesheets, it is very difficult to defer layout
decisions. The structure and overall look are frozen, unless you change them all by hand.

Say you’ve created a list of definitions in your document. Maybe you’ve applied a term style
(like bold) to each term you’ve defined and a definition style (like plain) to each definition.
You manually entered a colon between each term and its corresponding definition.

WYSIWYG: An acronym for What You See Is What You Get

After entering 500 definitions, you change your mind. It would be much better if the term
and definition were separated by a blank line. You want to (for whatever reason) put the
definition in parentheses, make it italic, and remove the colon. You also want horizontal lines
above and below each definition to visually separate them in the list, and the definition

should be right-aligned at a tab stop (which you hadn’t created before). Oh, and because
your document makes extensive use of obscure definitions, you want each term marked so it
can be cross-referenced.

WYSIWYG  (An acronym for What You See Is What You Get)

With a WYSIWYG word processor, one would have to find a way to select all the definitions
and apply some kind of macro to make the above transformations. Although it would
probably be doable, it would be a lot of work that you shouldn’t have to do. Most of the time
would be spent recognizing the different parts of the definition, munging text, and locating
the definitions—which might be scattered throughout the document (or multiple
documents!).

TeX approaches this problem differently. An experienced TeX user would probably create a
definition construct. Perhaps he would enter the definitions like this: (Notice that the term
and definition each are arguments to the \def macro.)

\defWYSIWYGAn acronym for What You See Is What You Get

Changing the layout, font, styles, and any other aspect of the definition format is as simple
as changing the the way \def is defined. This can be particularly useful for articles that may
be published in different journals. Each journal can have its own way of formatting certain
mathematical constructs, and all the different formats can be generated from the same TeX
file.

Customizability
Many of LaTeX’s features, such as automatic formatting of lists, are now available in
conventional word processors (this was not true when LaTeX was released). Even so, I
generally find LaTeX easier to deal with than the WYSIWYG approach, mainly because the
latter requires you to give logical instructions to the word processor using WYSIWYG actions.
For instance, in Word 98’s list mode, pressing <return> creates a new list item. It is not at all
obvious how, then, one should create a single list item consisting of multiple paragraphs.
Hitting <return> twice takes you out of list mode. This is confusing!

If you want to change an item’s symbol from a • to a + or - (perhaps you are making a
pros/cons list), it requires seven mouse clicks in Word 98 (including summoning a contextual
menu and navigating two nested dialog boxes). In LaTeX, you would simply change: \item to \
item[+] or \item[-]. (Square brackets denote an optional argument to a macro. If you leave
them out of \item, LaTeX figures out which symbol to use.)

Portability and Versatility
WYSIWYG software tends to not be very portable. ClarisWorks and Microsoft Office run on
Macintosh and Windows, WordPerfect has a completely different version for each, and there
are many single-platform word processors. There is no WYSIWYG word processor that runs
on Mac, Windows, Unix, Linux, NeXT, and Amiga. But HTML and TeX do. Further, since they’re
both plain-text formats the files are 100% compatible—no file translation or encoding

necessary. Since the renderer and editor are separate, it’s easy for browser manufacturers
and providers of TeX implementations to add value for their customers without sacrificing
compatibility or changing the file format.

Using plain text as a file format has other advantages. Dynamic data-driven Web sites are
prevalent today because webmasters can use an ensemble of text-processing tools to create
HTML files on-demand. It’s unlikely that such a variety of tools for this would exist if HTML
were a proprietary WYSIWYG format. And although their pages aren’t served up
electronically, TeX users enjoy much they same flexibility. It’s far easier to write scripts that
assemble documents from data using TeX than a word processor, primarily because of the
former’s markup-like nature.

The future of the Web seems to lie in XML, eXtensible Markup Language. XML provides an
extensible means of adding logical markup to documents. For example, an XML version of
Hamlet might have tags for speeches and stage directions; the browser/client, if it
understood these, could treat them more specially than if it simply received formatting tags.
In addition, XML should allow for much more intelligent Web searching, since it provides a
means for the computer to understand the semantics of the documents it indexes.

Conclusion
Open standard non-WYSIWYG languages like HTML and TeX bring us some of the promise of
OpenDoc. Although they don’t free us from the application software paradigm, they break
the paradigm of having a one-to-one correspondence between file types and applications. In
each case, a multitude of specialized tools can be applied towards document creation, rather
than requiring a single monolithic application that is a jack of all trades but master of none.

Non-WYSIWYG systems also have their problems. They are more difficult to learn, and since
you usually have to work through a browser or previewer, experimentation is not
encouraged. Even coupled with an environment like Textures (see the review in this issue) I
would not want to use TeX for an irregularly formatted document like a newsletter. It is just
too painful for doing creative work.

WYSIWYG and non-WYSIWYG environments each have their uses, and neither is likely to
replace the other. Each paradigm makes a different tradeoff between what sort of work the
computer and user need to do. In non-WYSIWYG systems, many of the typographic details
are handled by the computer, but it is more difficult to do layout tasks. WYSIWYG systems,
on the other hand, give ultimate freedom—provided your software supports the specific
feature you want and you are willing to take care of details that the computer could do
better. In the end, the most important thing is that we have a choice.

“The Personal Computing Paradigm” is copyright © 1998 by Michael Tsai, <mtsai@atpm.com>.

